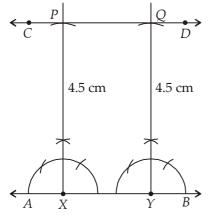
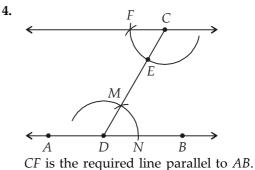

MATHEMATICS IN EVERYDAY LIFE-7 CORDO

Chapter 15 : Practical Geometry

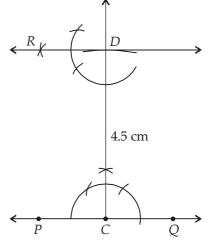
ANSWER KEYS



PQ is the required line parallel to line segment AB.

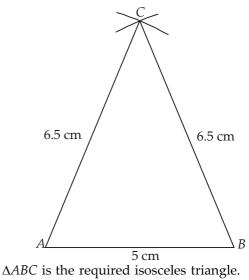

CD is the required line parallel to *AB* at a distance of 5.5 cm from it.

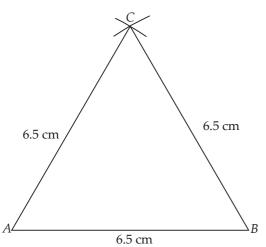
3. First we draw a line *AB* and then we draw a line parallel to it and at a distance of 4.5 cm from it.



AB and CD are the required parallel lines at a distance of 4.5 cm from each other.

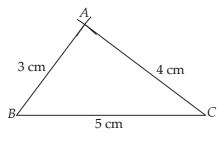
Mathematics In Everyday Life-7



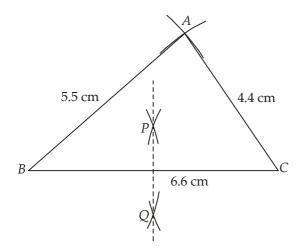

DR is the required line parallel to PQ.

EXERCISE 15.2

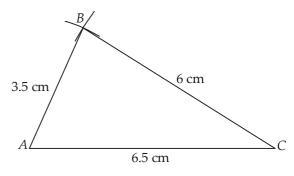
1. Given that AB = 5 cm, BC = 6.5 cm, AC = 6.5 cm.



2. Let *ABC* be the required equilateral triangle in which AB = BC = CA = 6.5 cm.

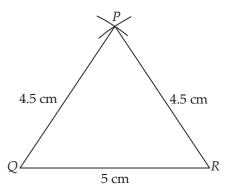

 $\triangle ABC$ is the required equilateral triangle.

3. Given that : AB = 3 cm, BC = 5 cm, AC = 4 cm.

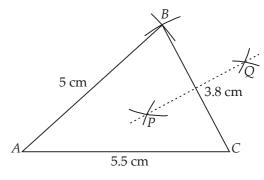


 $\triangle ABC$ is the required triangle. On measurement, $\angle A = 90^{\circ}$.

4. Let AB = 5.5 cm, BC = 6.6 cm, AC = 4.4 cm.

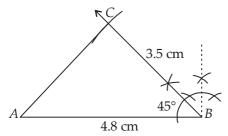


 $\triangle ABC$ is the required triangle. BC is the largest side. PQ is the required bisector. 5. Given that : AB = 3.5 cm, BC = 6 cm, AC = 6.5 cm.

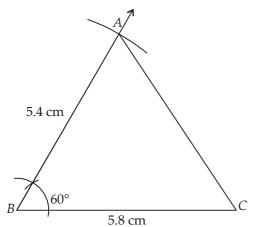

 $\triangle ABC$ is the required triangle. On measurement, $\angle A = 65^{\circ}$, $\angle B = 85^{\circ}$ and $\angle C = 30^{\circ}$

6. Given that : PQ = 4.5 cm, QR = 5 cm, PR = 4.5 cm.

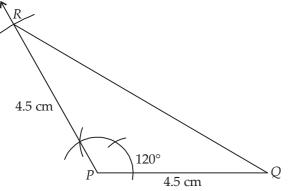
 ΔPQR is the required triangle. In ΔPQR , PQ = PR = 4.5 cm. So it is an isosceles triangle.


7. Given that : AB = 5 cm, BC = 3.8 cm AC = 5.5 cm

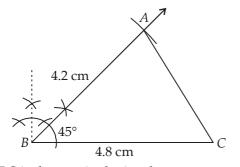
 $\triangle ABC$ is the required triangle. PQ is the required perpendicular bisector of BC.


EXERCISE 15.3

1. Given that : AB = 4.8 cm, BC = 3.5 cm and $\angle ABC = 45^{\circ}$.

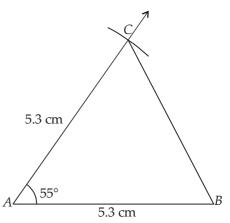

 $\triangle ABC$ is the required triangle.

2. Given that : AB = 5.4 cm, BC = 5.8 cm and $\angle B = 60^{\circ}$.

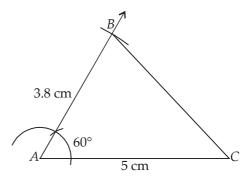

 ΔABC is the required triangle.

3. Given that : $\angle P = 120^{\circ}$, PQ = PR = 4.5 cm.

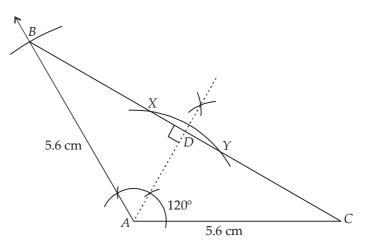
 ΔPQR is the required isosceles triangle. On measurement, $\angle R = \angle Q = 30^{\circ}$.


4. Given that : BC = 4.8 cm, AB = 4.2 cm and $\angle B = 45^{\circ}$.

 ΔABC is the required triangle.


Mathematics In Everyday Life-7

5. Let *ABC* be the required isosceles triangle in which AB = AC = 5.3 cm and $\angle A = 55^{\circ}$.

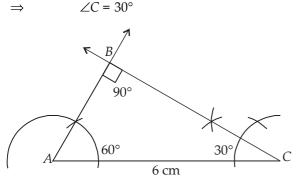

 $\triangle ABC$ is the required isosceles triangle.

6. Given that : AC = 5 cm, AB = 3.8 cm and $\angle A = 60^{\circ}$.

 ΔABC is the required triangle.

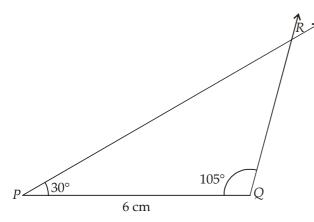
7. Given that : AB = AC = 5.6 cm and $\angle A = 120^{\circ}$.

 $\triangle ABC$ is the required isosceles triangle.

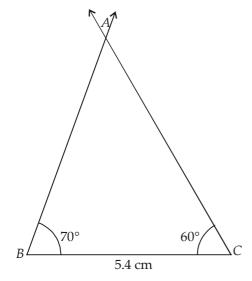

To draw perpendicular AD on BC taking A as centre and suitable radius. We draw an arc intersecting BCat X and Y Taking X and Y as centres and radius more than half of XY draw two arcs above BCintersecting at Z. Join AZ which intersects BC at D.

EXERCISE 15.4

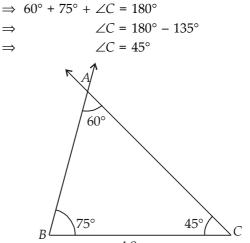
1. Given that : AC = 6 cm, $\angle A = 60^{\circ}$ and $\angle B = 90^{\circ}$. In $\triangle ABC$,

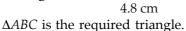

 $\angle A + \angle B + \angle C = 180^{\circ}$ (Angle sum property) $\Rightarrow 60^{\circ} + 90^{\circ} + \angle C = 180^{\circ}$ $\Rightarrow \qquad \angle C = 180^{\circ} - (60^{\circ} + 90^{\circ})$

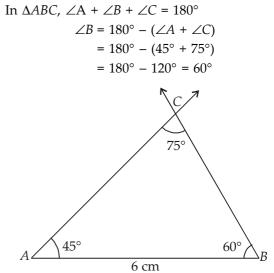
- $\Rightarrow \qquad \angle C = 180^{\circ} 150^{\circ}$ $\Rightarrow \qquad \angle C = 180^{\circ} 150^{\circ}$
- $\Rightarrow \qquad \angle C = 180^{\circ} \\ \Rightarrow \qquad \angle C = 30^{\circ}$


 ΔABC is the required triangle.

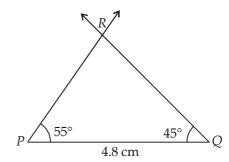
2. Given that : PQ = 6 cm, $\angle P = 30^{\circ}$ and $\angle Q = 105^{\circ}$.


 ΔPQR is the required triangle.


3. Given that : $\angle B = 70^\circ$, $\angle C = 60^\circ$ and BC = 5.4 cm


 ΔABC is the required triangle.

4. Given that : BC = 4.8 cm, $\angle B = 75^{\circ}$ and $\angle A = 60^{\circ}$. $\therefore \ \angle A + \angle B + \angle C = 180^{\circ}$ (\because Angle sum property)



5. Given that : AB = 6 cm, $\angle A = 45^{\circ}$ and $\angle C = 75^{\circ}$.

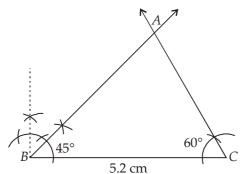
 $\triangle ABC$ is the required triangle.

6. Given that : PQ = 4.8 cm, $\angle P = 55^{\circ}$, $\angle Q = 45^{\circ}$.

 ΔPQR is the required triangle. In ΔPQR ,

 $\angle P + \angle Q + \angle R = 180^{\circ}$

 $\Rightarrow \qquad \angle R = 180^{\circ} - (\angle P + \angle Q)$


 $\Rightarrow \qquad \angle R = 180^{\circ} - (55^{\circ} + 45^{\circ})$

 $\Rightarrow \qquad \angle R = 180^\circ - 100^\circ = 80^\circ$

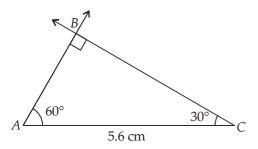
We can verify it by measuring the $\angle PRQ$.

Answer Keys

7. Base angles of a $\triangle ABC$, $\angle B = 45^{\circ}$, $\angle C = 60^{\circ}$ and BC = 5.2 cm.

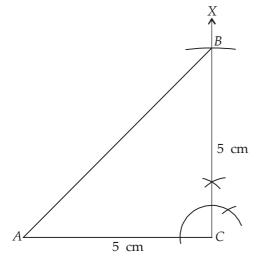
 ΔABC is the required triangle.

EXERCISE 15.5


1. Let *ABC* be the required right angled triangle, right angle at *B*.

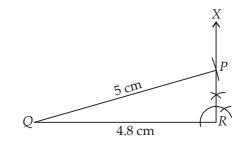
Then, hypotenuse AC = 5.6 cm.

On of the acute angles (say *C*) is 30°.

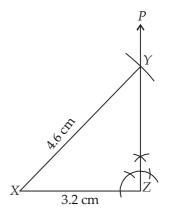

$$\therefore \qquad \angle A = 180^{\circ} - (\angle B + \angle C) \\ = 180^{\circ} - (90^{\circ} + 30^{\circ}) \\ = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

Now, we draw a triangle *ABC* in which AC = 5.6 cm, $\angle A = 60^{\circ}$ and $\angle C = 30^{\circ}$.

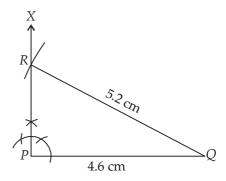
2. Given that : $\triangle ABC$ is an isosceles triangle in which AC = 5 cm and $\angle C = 90^{\circ}$.


AB is hypotinuse, BC = AC = 5 cm.

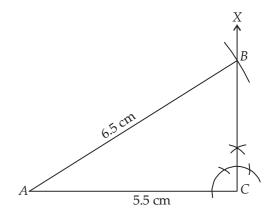
 $\triangle ABC$ is the required right angled isosceles triangle.


Mathematics In Everyday Life-7

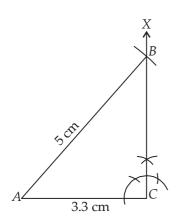
3. Given that : PQ = 5 cm, QR = 4.8 cm and $\angle R = 90^{\circ}$.


 ΔPQR is the required right angled triangle.

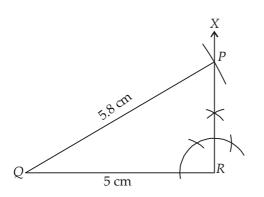
4. Given that : XY = 4.6 cm, XZ = 3.2 cm and $\angle Z = 90^{\circ}$.


 ΔXYZ is the required right angled triangle.

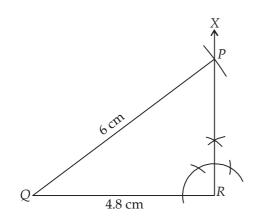
5. Given that : $\angle P = 90^{\circ}$, QR = 5.2 cm and PQ = 4.6 cm.


 ΔPQR is the required right angled triangle.

6. Given that : AB = 6.5 cm, AC = 5.5 cm and $\angle C = 90^{\circ}$.

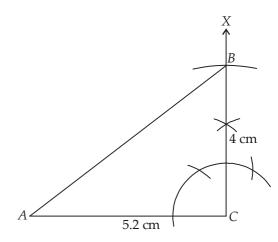

 $\triangle ABC$ is the required right angled triangle.

7. Given that : Hypotenuse AB = 5 cm, AC = 3.3 cm. Also, $\angle C = 90^{\circ}$ as AB is hypotenuse.

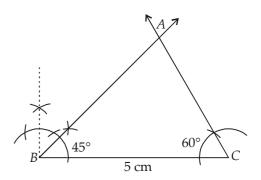

 $\triangle ABC$ is the required right angled triangle.

8. Given that : QR = 5 cm, $\angle R = 90^{\circ}$ and PQ = 5.8 cm.

 ΔPQR is the required right angled triangle.


9. Given that : QR = 4.8 cm, PQ = 6 cm, $\angle R = 90^{\circ}$.

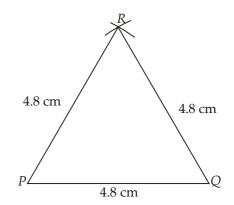
 ΔPQR is the required triangle.


REVIEW EXERCISE

1. Given that : AC = 5.2 cm, BC = 4 cm and $\angle C = 90^{\circ}$.

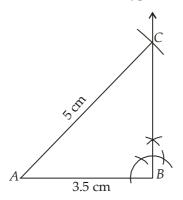
 $\triangle ABC$ is the required triangle.

2. Given that : BC = 5 cm, base angles $\angle B = 45^{\circ}$ and $\angle C = 60^{\circ}$.


 $\triangle ABC$ is the required triangle.

Third angle, $\angle A = 180^{\circ} - (\angle B + \angle C)$ = $180^{\circ} - (45^{\circ} + 60^{\circ})$

$$= 180^{\circ} - 105^{\circ} = 75^{\circ}$$


We can verify it by measurement.

3. Let $\triangle PQR$ be required equilateral triangle in which PQ = QR = RP = 4.8 cm.

 ΔPQR is the required equilateral triangle.

4. Let *ABC* be required right triangle, right angled at *B* in which base AB = 3.5 cm, hypotenuse AC = 5 cm.

Thus, $\triangle ABC$ is the required right angled triangle. On measurement, BC = 3.5 cm.

HOTS QUESTIONS

1. Let *ABC* be the required isosceles triangle having vertical angle *A*.

Vertical angle, $\angle A = 30^{\circ}$

Base angle, $\angle B = \angle C$

Base BC = 3.6 cm.

Let other two equal angles be *x*.


 $\therefore x + x + 30^\circ = 180^\circ$ (Angle sum property)

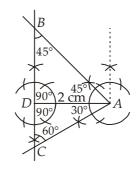
- $\Rightarrow \qquad 2x = 180^{\circ} 30^{\circ}$
- \Rightarrow $2x = 150^{\circ}$

$$\Rightarrow \qquad x = \frac{150^{\circ}}{2}$$

 \Rightarrow $x = 75^{\circ}$

Now, BC = 3.6 cm, $\angle A = 30^\circ$, $\angle B = 75^\circ$ and $\angle C = 75^\circ$.

Thus, $\triangle ABC$ is the required isosceles triangle.


2. First of all, we draw a rough sketch.

 $= 30^{\circ}$

Let the required triangle be

$$ABC$$
 in which base angles
 $\angle B = 45^{\circ}$ and $\angle C = 60^{\circ}$, altitude
 $AD = 2$ cm.
Now, $\angle ADB = \angle ADC = 90^{\circ}$
In $\triangle ADB$,
 $\angle BAD = 180^{\circ} - (\angle ABD + \angle ADB)$
 $= 180^{\circ} - (45^{\circ} + 90^{\circ})$
 $= 180^{\circ} - 135^{\circ}$
 $= 45^{\circ}$
In $\triangle ADC$,
 $\angle CAD = 180^{\circ} - (\angle ACD + \angle ADC)$
 $= 180^{\circ} - (60^{\circ} + 90^{\circ})$
 $= 180^{\circ} - 150^{\circ}$

Now, we construct two triangles having common base AD = 2 cm.

 $\triangle ABC$ is the required triangle whose altitude is 2 cm and base angles are 45° and 60°.